Neutron Powder Diffraction and Novel Materials

8th Zuoz Summer School on Neutron Scattering, 5-11 August 2000

Why Use Neutron Powder Diffraction?

- Structure of the 90K high Tc superconductor
 - Left -by X-rays
 (Bell labs & others)
 - Right -by Neutrons (many neutron labs)
- The neutron picture gave a very different idea of the structure important in the search for similar materials.

 $YBa_2Cu_3O_7$ drawing from Capponi et al. Europhys Lett **3** 1301 (1987)

Why Neutrons?

Relative Scattering Powers of the Elements

 Neutrons scatter strongly from light elements (Because neutron scattering is a nuclear interaction)

Why Neutrons?

Neutrons are unique for Magnetic Structures

• H.M. Rietveld

Structure of Magnetic Materials

MnTa₄S₈ - the famous example given in the original Rietveld manual

Why Powders?

- ...Well, if you don't <u>have</u> a single crystal...
- For many <u>new</u>, <u>interesting</u> materials, single crystals are not available
 - Zeolites, Superconductors, GMR materials...
- And many other materials are <u>not really</u> single crystals
 - At least not at 0 K, the most important temperature

Why Powders?

- Destructive Phase T/Ns
 - Classical Perovskite transitions
 Small displacements of light atoms
 - Subtle changes in the powder 'profile'
 - interest of "Profile Refinement"
- And no single crystals

Why Rietveld Refinement?

- Strongly overlapping reflections
 - Previously, integrated intensities were obtained for groups of overlapping reflections.
- Key to success of RR
 - inclusion of all the information
 - refinement of <u>physically meaningful parameters</u> (reduction of correlation between parameters)

Why not X-ray Powder Diffraction?

Alan Hewat

TII. Grenoble

(Question from Bruno Dorner)

- Magnetic structures... not possible with x-ray powders
- X-rays best (synchrotrons) for SOLVING structures
 Easier to find the heavy atoms first
 All atoms are 'equal' for neutrons
- Neutrons are best for REFINING structures
 Few systematic errors (average over big samples etc...)

 Easier sample environment (low temperatures etc...)
- Interest of very precise structure measurements
 Precise bond lengths
 Study charge ordering, metal-insulator transitions...

Valence Sum Calculations

What is the valence of Cu in Cu_4O_3 ? (Exercise)

O'Keeffe, M. Bovin, J. Am. Miner 63 180 (1978)

- Average Cu valence = 2*3/4 = 1.5
 - Just from the formula Cu_4O_3
- 2 types of Cu
 - Cu^+ at (0,0,0) with 2 oxygens
 - Cu^{++} at (0,0,1/2) with 4 oxygens
- Valence Sum $V=\Sigma_i[exp(Ro-Ri)/B]$
 - Ri = Cu-Oi bond lengths
 - Ro= 1.610 for Cu+ to O2-
 - B = 0.370
- Calculate Ri bond lengths & hence V Hints:
 - All bonds approx equal
 - Each bond contributes ~ 0.5

Valence Sums & "Charge Transfer"

Most cited neutron papers - "charge reservoir" concept in oxide superconductors

- Superc. YBa₂Cu₃O₇
- Non-superc. YBa₂Cu₃O₆

Charge Reservoir

- Cava, R. J. et al. (1990). Physica C. 165: 419 (Bell labs/CNRS/ILL)
- Jorgensen, .D. et al. (1990) Phys. Rev. B41, 1863 (Argonne)

Valence Sums & "Charge Transfer"

Fig. 16. Comparison of $T_{\rm c}$ and bond valence sum around the plane copper as a function of oxygen stoichiometry.

- Relation between bond lengths, charge transfer and superconducting Tc
- The "Charge Reservoir" concept encouraged many chemists to successfully search for similar materials with different charge reservoir layers

Popularity of Neutron Powder Diffraction

Powder Diffractometers are Simple

- A continuous neutron source
- Incident collimation
- A Monochromator
- The Sample & environment
- Scattering collimation
- A Detector

Alternative TOF techniques

- Time-of-flight diffractometers (E.Steichele, Munich)
 - J. Jorgensen, Argonne (SEPD, GPPD)
 - B. Fender & A. Hewat, Rutherford Lab.

HRPD ISIS (High Resolution Powder Diffractometer)
 W. David et al.

Early Days at ILL Grenoble (1972)

- First ILL Powder
 Diffractometers D1A,D2
 - Single detector
 - Small soller collimator
 - Shared monochromator
- -High Resolution, BUT-Very Low Intensity

Early Days at ILL Grenoble (1974)

- Orders of Magnitude
 Improvement D1A
 - Multiple detectors
 - Large efficient collimators
 - Focussing Monochromator

Comparison of D1A with D2 (1974)

The same Al2O3
 sample on D1A
 (top) and the old
 D2 at ILL.

Early Days at ILL Grenoble (1973)

- New types of PSD's
 - Position Sensitive Detector used for the first time
 - Very Fast machine (Faster than X-rays)
 - Moderate Resolution
- In-situ Chemistry with RR (Convert, Riekel ...)

The Second Generation (80's)

High Resolution with Very Large Detector banks (D2B, ILL)

The Second Generation (80's)

DMC high efficiency PSD powder diffractometer PSI (Zurich)
 P. Fischer et al.

An Inexpensive but Effective PSD

The liner wire PSD powder diffractometer at Kjeller, Norway.

State of the Art Powder Machines

HRPT 1600 cell PSD powder diffractometer at PSI (Zurich)
 P. Fischer et al.

State of the Art Powder Machines

SINQ target H₂O scatterer high energy shutter beam reductions collimator (α_1) SINQ target Si filter. shielding LNo beloop radial collimator monochromator shielding sample monitor **PSD** shutter detector vert. foc. Ge (hkk) monochromator 120° 90°

 HRPT 1600 cell PSD powder diffractometer at PSI (Zurich)
 P. Fischer et al.

State of the Art Powder Machines

Alan Hewat

ILL Grenoble

1600 wire PSD on a continuous spallation neutron source

 Radial Collimator for new HRPT diffractometer at PSI Zurich (Fast, medium-high resolution machine) Peter Fischer et al.

Microstrip Detectors

- The wires are replaced by a printed circuit on a glass substrate
- A high electric field is produced around the thin anodes.
- The glass substrate is electrically conducting to remove charge build-up

 PSD for 1600 element microstrip detector D20 at ILL Grenoble (Fast medium-high resolution machine) Pierre Convert et al.

What is a Microstrip Detector?

The printed circuit allows high resolution, mechanical stability...

The Future - Big Detectors

1600 element microstrip PSD on a continuous neutron source

• Large 1600 element microstrip detector, D20 at ILL Grenoble (Fast medium-high resolution machine) Pierre Convert et al.

The Future - Big Detectors

- HRPD & GEM, ISIS
 - New scintillator detector element.
 - Project for new 90° (medium resolution) detector bank

The Future - Big Detectors

Large detector array on a continuous neutron source

Super-D2B at ILL Grenoble, very large high resolution detector

New Munich Reactor FRM-II

SPODI Structure Powder Diffractometer cf super-D2B

- Source distance 14.5m
 - Neutron supermirror guide
- Monochromator
 - Ge [551] vertical focus
 - Angle 90°, 135°, 155°
 - Mosaic 20'
- 80 Mylar 10' collimators
- 80 He3 detectors
 - 300 cm high
 - Linear wire PSD
- cf ILL super-D2B project.

Neutron Powder Diffraction

Real Materials, not crystals - Hydrogen in Metals

- Hydrogen storage in metals
 - Location of H among heavy atoms
 - No single crystals
- Laves phases eg LnMg₂H₇ (La,Ce)
 - Binary alloys with large/small atoms
 - Various stackings of tetrahedral sites -can be occupied by H-atoms
 - Up to 7 Hydrogens per unit
- Can even find H in Eu on D20!

Gingl, Yvon et al. (1997) J. Alloys Compounds **253**, 313. Kohlmann, Gingl, Hansen, Yvon (1999) <u>Angew. Chemie</u> **38**, 2029. etc..

Neutron Powder Diffraction

Real Materials, not crystals - Hydrogen in Metals

- Hydrogen storage in metals
 - Location of H among heavy atoms
 - No single crystals
- Laves phases eg LnMg₂H₇ (La,Ce)
 - Binary alloys with large/small atoms
 - Various stackings of tetrahedral sites -can be occupied by H-atoms
 - Up to 7 Hydrogens per unit
- Can even find H in Eu on D20!

Gingl, Yvon et al. (1997) J. Alloys Compounds 253, 313. Kohlmann, Gingl, Hansen, Yvon (1999) <u>Angew. Chemie</u> 38, 2029. etc..

High Pressure Powder Diffraction

New phases of Ice discovered by neutron diffraction

- Mixture of 5- and 7-membered rings of Ice XII.
- Delicate balance between competing ice phases - tests water potential functions in chemical & biological systems
- Model metastable structures

Lobban, Finney, Kuhs (1998) Nature 391, 268. Kuhs, Lobban, Finney (1999) Rev.High Press.Sci.& Tech. 7.

High Pressure Powder Diffraction

New phases of Ice discovered by neutron diffraction

- Ice-XII densest form of ice without interpenetration
- Ice-IV auto-clathrate interpenetration of H-bonds for even higher density
- Ice-He clathrate like Ice-II

Lobban, Finney, Kuhs (1998) Nature 391, 268. Kuhs, Lobban, Finney (1999) Rev.High Press.Sci.& Tech. 7.

Applications of large fast detectors Real-time Phase Diagrams

Sue Kilcoyne, Bob Cywinski et al. Crystallisation of amorphous alloys Y_{67} Fe₃₃ with increasing temperature

Complete diffraction pattern in minutes or seconds, scan through temperature

Applications of large fast detectors

Pseudo-binary RMn₂ compounds: Dy_{1-x}Y_x Mn₂ Clemens Ritter, R. Cywinski et al on D1B

ILL Grenoble

Applications of large fast detectors

Real-time electro-chemistry

Latroche, Chabre et al.
 In-situ Charging and discharging of metal hydride electrodes LaNi5

Discharging

Charging

Discharging

Charging

Follow chemical changes with battery charge/dischage cycle

Valence Sum Calculations

What is the valence of Cu in Cu_4O_3 ?

O'Keeffe, M. Bovin, J. Am. Miner 63 180 (1978)

- Average Cu valence = 2*3/4 = 1.5
- 2 types of Cu
 - Cu^+ at (0,0,0) with 2 oxygens
 - Cu^{++} at (0,0,1/2) with 4 oxygens
- Valence Sum $V=\Sigma_i[exp(Ro-Ri)/B]$
 - Ri = Cu-Oi bond lengths
 - Ro= 1.610 for Cu+ to O2-
 - B = 0.370
- Calculate Ri bond lengths & hence V

Electronic Order-Disorder

- Oxide superconductors, CMR, Vewey transition...
- Precise structural measurements vs temperature

• Example: charge ordering in Ti₄O₇ (Le Page et al.

Neutron Powder Diffraction Charge Transfer in YNiO₃

Alan Hewat

ILL Grenoble

Marie-Theresa Fernandez-Diaz et al.

Combined ESRF, D1B and D2B data - Alonso J.A. et al (1999) PRL 82, 3873 Metallic Ortho. YNiO3 -> Insulating Mono. YNiO3 T < 582K Ni valence $3-\delta$, $3+\delta$

 $M(Ni1) = -1.4 \mu_B$ $M(Ni2) = 0.7 \mu_B$

Neutron Powder Diffraction Charge Transfer in YNiO₃

Marie-Theresa Fernandez-Diaz et al.

Combined ESRF, D1B and D2B data - Alonso J.A. et al (1999) PRL 82, 3873 Metallic Ortho. YNiO3 -> Insulating Mono. YNiO3 T < 582K Ni valence $3-\delta$, $3+\delta$

 $V(Ni1) = 2.62 \quad V(Ni2) = 3.17$

- Double evidence for charge transfer
 - Magnetic superstructure and different moments on Ni-sites
 - Different Ni-O distances around Ni1 and Ni2 sites mean 'charge transfer'
- Neutrons provide both. But need:
 - High resolution to resolve symmetry
 - High flux to see superstructure

Giant Magneto-Resistive Ceramics La _{0.333}Ca _{0.667}MnO₃

- Very large changes in electrical resistivity with temperature
- cf oxide superconductors
- mixed valence charge-ordering Mn³⁺/Mn⁴⁺
- GMR effect near room temperature
- applications to magnetic storage of data (new high density IBM hard disks)

GMR Stripes and Charge Ordering

1D-ordering? Dimensionality important for theory.

Mori et al. Nature (1998) 392,473 Other papers in Phys. Rev. Letters

- Remarkable electron microscope images of 1D stripe pattern in GMR La_{0.33}Ca_{30.67}MnO₃
- Evidence also for 1D ordering in high-Tc superconductors (Cu³⁺ stripes, spin-ladders etc)

GMR Stripes and Charge Ordering

1D-ordering? Dimensionality important for theory.

a) Wigner crystal model Mn4+ a axis b) Stripe model c axis ----- AFM ~~~ frustrated

 Expect instead Mn³⁺/Mn⁴⁺ to be uniformly distributed (2D Wigner crystal model of Goodenough)

 The 1D-stripe model would have very important consequences for the theory of superconductors and GMR oxides

GMR Stripes and Charge Ordering

Neutron + Synchrotron Powder Diffraction

Radaelli et al. (1999) Phys. Rev B X-ray work on X7A (BNL) Neutron work on D2B (ILL)

- High resolution synchrotron powder data (Brookhaven) reveals true symmetry & ss
- High resolution neutron powder data (ILL Grenoble) allows refinement of real structure
 - a) Average Structure
 - b) Stripe Structure
 - c) Wigner Crystal Structure (best fit)
- The stripe structure is not supported

Neutron Powder Diffraction

- What has been achieved? Exciting new science?
 - High impact even outside the crystallographic community
 - Magnetism, Superconductors, Giant Magneto-Resistance
- Why Neutrons? Why not X-rays?
 - Neutrons+X-rays complementary
 - Solution of structures with X-rays
 - Refinement of important details with neutrons valence sums
- Why Powders? Why not crystals?
 - Crystals should be used when available
 - Much new work started with powders high Tc, GMR...